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1 Introduction

In previous paper [2], we succeeded to find a relation between the
finite range structure condition (abrr. FRS) and countable state sofic
shifts, that is, piecewise invertible systems with FRS define countable
state sofic shifts. Such piecewise invertible systems with FRS give
nice examples of countable state symbolic dynamics. In [2], we
showed that the motion of piecewise invertible maps with FRS is
described by labelled graphs with finitely many vertices and countably
many edges. The key of finding such graphs is to note the following

equivalence relation on the set of all semi-infinite admissible sequences:

(o)~ (bogbs) € N T Koo, = O T7X,_

cieb g
n=1 n 1

Under the FRS condition, the number of elements of the set %=

{T"X4,..cay Y0>0,V X, ...0,} is finite, so the limit N5, 7" X,_.q_, iS
exactly some U€ . This is a reason why we say that FRS implies
countable state sofic shift. However, 2 can be a countable set in some
class of piecewise invertible maps, and under some conditions we may
obtain nice invariant measures. The key property for the existence of

such nice invarinat measures may be considered as follows:
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inf{A(U): U U} >0.

Though we are still interested in case when % is a countable set,
we will not discuss on such a case in this paper because the graph we
will obtain has countably many vertices. For this reason, we can not
expect any information from the labelled graph which determines the
original system. Our main purpose in this paper is to study shifts

obtained from labelled graphs G with finitely many vertices and

- countably many edges. In section 3, under the irreducibility and the

right resolving property we will show that the factor map which is
obtained by reading off the labels of the edges of G is finite to one and
show the existence of a magic word. Combining these results, we have
an analogy to the following well-known fact in finite state symbolic
dynamics:

A finite-to-one factor map is one to one almost everywhere if and

only if it has a »ght resolving block (magic word).

2 Notation and preliminaly results

Let T be a transformation on a bounded domain X(CR”) and @ =
{X,},c; be a countable partition of X satisfying the following condi-
tions:

1. @ is the generating partition (i.e., \/°,:=0T""Q is the partition
into points).

2. Each X, is a connected subset of X with piecewise smooth
boundary, and X, can not intersect any X, with b+a.

3. T is a locally homeomorphism on each X,.

We call such T a piecewise tnvertible map and call the triple (7, X,
Q) a precewise invertible system. 1If int (Xo N T7'X,,.. N T-"VX, )+

¢, then we say that the sequence (a...a,) is admissible and denote X, N
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T X, N..0T="VX, by X .., We call Xg . .q

rank n. " denotes the set of all cylinders of rank #. | a...a, |

, a cylinder of
stands for the length of the sequence (a,...a,). We denote o, the set of
all admissible sequences of length # and %= U ., o Put ¥=U°>_,
Zn Let X * be the set of all right semi-infinite sequences (¢, a,...a,...)
satisfying (a,...a,)€  for all n>0. For (g14,...a,..)E %, put pla,a,..)=
N T X,

a;.,- Lt follows from the genarator condition that p(@1....) is

at most single point of X. Put X ,={(aa..)€X* plaa..)=0}.

Define
Xr= ﬁoa*“'{(alaz...)e 2NZo plaa.. )E X, },

where o* is the left shift on 2 *, ie., oclaa..) = (@a..). We
remark that X * and X * are ¢*-invariant.
Proposition 2.1 p: X *—X is a bijective, continuous shift commuting
map, t.e., Tp=pc*.

We call the triple (2 *',6*p) a realization of (7, X, @, U) or a
symbolic dynamics of (7, X, Q, U),

We will define a version of the Markov property.
Definition We say that X, ..., € Zis a Markov cylinder if for ¥ Xy
e.2™ satisfying int (T ™ Xym N Xan) F0, int Kooy T T ™ Xyim.

Let .#” be the set of all Markov cylinders of rank # and put #=
UL, #" Assume that

(C-1) T is onto (i.e., X=U ., TX,).

Then it follows from the condition 3 that 7" is a non-singular
transformation with respect to Lebesgue measure A of X. This fact
and the local invertibility of T allows us to have the next result.
Proposition 2.2 Let (T, X, Q) be a piecewise invertible system. For a

Markov cylinder X.,...q,, the following conditions arve equivalent.
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(@) (by...0a,...an)E .
(b) T™*' Xy, .50y a,= T "Xay-wa,, (A mod 0).
(€) T'X,,...,,2int Xg,...q,
Definition We say that 7 has the k-Markov property if #*=*

Denote U*={T*X,,...o,’ (&1..a)E} and put U= U= U~

Remark A U =U"*~ T has the k-Markov property. If T satisfies the
k-Markov property, then we call a guadraple (7, X, @, U) a
piecewise invertible k-Markov system. Its symbolic dynamics is
exactly countable state ‘k-Markov shift’([3]).

Defmltlon Let (7, X, @) be a piecewise mvert1ble system such that ¢
consists of only finitely many subsets of X with positive Lebes-
gue measure. Then we say that T guarantees a finite range
structuve (abrr.FRS) and we call the quadraple (T, X, Q %U) a
piecewise invertible system with FRS.

Remark B The subclass .# of & has the “strong playback property”, i.
e, for VXyn€ # and for V X, mE L such that X, maunE.2L,
Xyman also belongs to _#.

In fact, as the admissibility of the sequence c(l)-b(m)a‘(n) implies
the admissibility of ¢(/)b(m)-a(n), the above assertioon is obtained
immediately. |
Remark C If X,,, is a Markov cylinder, then for any X,.,<.% such

that Xomem €L, Xamem also belongs to 7.

3 Subshifts of finite range

Let G be a labelled graph with finitely many vertices and infinitely
many edges, with the property:
(1) The follower set of the vertices are distinct. Here, a follower set

7 (v) of vertex v is by definitior. the set of infinite sequences a,a,...
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a a

ogom

(Figure 1)

which label paths beginning at v. (Figure 1)

(2) G 1is irreducible, i.é., for any vertices v;,v,, there exists a path in G
from v, to v,.

(3) G is a right resolving graph, i.e., no two edges beginning at the same
vertex have the same label.

Let Y be the space of all infinite sequences y=...y_1%%... Which
label path in G. Let Y_ be the set of all left semi-infinite sequences
appearing in points of Y, and define for (...a_n...a_,)€ Y. #(...a_,...a_,)
is the set of right semi-infinite sequences (¢a;...) such that (...a_,}(4...)E
Y. For each n>0 let % (a_n..a.,) be the set of right semi-infinite
sequences (@a;...) such that (a_,..a_)(@&a...) apperar in points of Y.
Then,

L/J(‘(a—n---a—l)2.971(@—(71%»1)&—71---@—1)’
SO

lim%(a-p..a.,)= on‘“(a_n...a_l):F(...a_n...a_l).

n—o0

Define an equivalence relation over Y_ as follows:
(tpeay) ~ (Lbop b)) Fana))=F (. b_n. b))

Theorem 3.1 The number of equivalence classes is only finite.
Proof For each (...a_....a_,)€ Y, we have a subset of vertex set V=
{vi),-.v:,} such that (..a_n...a_))= U ,cv.F(v). As the number

of vertices is only finite, {F(...a-n...a_1): (...G—p...a_.)E Y_} is at
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most a finite set.

Remark D In the above sence, we say that subshifts which are obtained
from labelled graphs satisfying (1),(2) and (3) are countable state
sofic shifts. We call such a shift subshift of finite range.

By standard way, we obtain the Shannon cover which is a minimal
right resolving graph and so that we have a finite to one factor map
which defines the countable state sofic shift occurred from the graph G.
So a subshift of finite range is a finite to one factor image of SFT which
is obtained from its Shannon cover. -Furthermore we can show the
existence of a right resolving block.

Theorem 3.2 Assume that (1), (2) and (3). Then there exists a word

m=m,...Mmq Such that if vy is an infinite sequence which labels an infinite

path in G, and y,...v,=m, then for any nfinite paths x,x" in G which are
labelled by y, we have x;=x"; for i>q.

(We call such a word m, a right vesolving block or a magic word.)

Proof Let uv,..v, be the vertices in G. Without loss of generality,
assume £>1. Pick a word a®=a{"...a}® such that a® labels a
path from at least one of the vertices, but ¢V does not label a

path from at least one of the vertices. Picture possible vertices

At most

| (k-1) vertices
| at the end

|

xa(ll) ———— a(kl)

(Figure 2)
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in G setting one corresponding position in ¢". For example
assuming no path which is labelled by ¢’ can begin at vertices v,.
(Figure 2). We remark that if for every >0, y,...y, labels a path
beginning at a vertex v, then the sequence y =y....is in ¥ (v).
In fact, for each #, let a{®a}”...a%” be a path in G labelled by y,...
y» such that initial vertex of y is v=wv,. Then some vertex v,
must occur as the initial vertex of a¥? for infinitely many #. For
these #, we have &{? an edge in G from v, to v, labelled by ¥,.
Choose a subsequence of the paths so that the initial edge a{® is
the same @,. For a subsequence of this subsequence the second
edge af® is the same @. And so on, @ @as... This gives an
infinite path labelled by y. By the resolving property, a path in
G with a given initial vertex and a given labelling word is
uniquely determined. So if the number of vertices in G is &, then
at most (£—1) vertices can be the terminal vertex of a pathin G
labelled by a{. Consider the set E, of terminal vertices of such
words. If 'E,=1, then done. If not, pick a word & which
labels a path from some vertex in E;, but not from every vertex

in £,. Let E, be the set of terminal vertices of words labelled by

2
. 1
) aV=1
@ @)
_“/
3
2 1

/—N
@ @), =
~_“ 1
2
3 (Figure 3)
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X
!
y T PA—2
m m m m
(Figure 4)

aVa?=al"...a%)a?...a¥).

Now k> 'E>'E,>.>"E,. Continue untii "E;=1. The
finiteness of number of vertices allows us to do it. Let m —a™
a?..a¥ V. (Figure 3).

We have further:

Corollary 3.1 Suppose y=..y_1YW.., m S the wovd produced by
Theorem 3.2, vy labels an infinite path in G, and we have G satisfying the
assumptions (1), (2) and (3) and for infinitely many negative integers n,
Voot Inrq=m. Then theve is only one infinite path in G labelled by y.
(Figure 4).

Now we ask: when a finite to one factor map with a right resolving
block is one to one almost everywhere? In case of finite state, we have
usually an ergodic Borel invariant measure which attains a maximal
entropy, so that we can show the following fact:

Proposition 3.1 Again assume (1), (2), (3), and let m be the right
resolving block as tnw Theovem 3.2. Let Y be the space of all infinite
sequences y=..Y_1Y%oW... which label path in G, and have the usual
topology (a basis for the topology is given by closed open sets of form v;...
y;=w.) Suppose u is an ergodic Borel probability measure on Y such
that for every non-empty open set O in Y, u(0)>0. (This means that

for those sets of form y,..y;=w, the u-measure 1s posotive.) Then the set
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{yEY: M=19pi1..Y0q JOr infinitely many positive and for infinitely
many negative integers n} has u-measure 1.
Proof Let O={y€Y: y..y,=m}, and x(0)>0. It follows from the

ergodic theorem that
n—1 i
u{yeY:liml/x= %lm(o"y):,u(O)}Zl.
n—co j=

For such y& Y, 1,.(c7y)#0 for infinitely many 7>0. It is not difficult
to show that 1,(¢”y)#0 for infinitely many j<0. Intersection of
two measure 1 sets has measure 1.

In case of countable state, we can not obtain such an invariant
measure usually. We have a sufficient condition for the existence of
an ergodic finite invariant measure equivalent to Lebesgue measure for
piecewise invertible maps with FRS in [1]. Even if we do not have
such nice invariant measure, the following condition which is given in

[3] is enough to answer to our question.
(C‘Z) U UeuMU—_—X(A mod 0)

Theorem 3.3 Let (T, X, Q@ = {X.},e;, U) be a piecewise invertible system
with FRS satisfying X&UW. Let n: 0—0 be the one-block map
obtained by Theorem 4.1 in [3). Assume that (C-2) is valid. Then n

B G

T (UigN X =T (U;yN X =T Xmyomq
(Figure 5)
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1S one to one almost everywhere.
Lemma 3.1 Markov cylinders give vight resolving blocks (magic words).
Proof It foHows from the definition of Markov cylinder that if x;...x,,
X1...xy are preimages of m = m,...m,, then we have x,.; =x5;;, Imme-
diately. In fact we have the following situation: (Figure 5).
Proof of Theorem 3.3 As mentiohed before, = is a finite to one factor
map. First we noto that:
Vxe X JUEU, such that U>x, so that IX, ..., & # satistying
M. Mgl (X)...an(x)E (Y n>0).
From Proposition 3.3 in [3] and Lemma 3.2, we can apply Corollary

3.1 to our situation in order to obtain the desired result.

Research partially supported by Sapporo University grant in 1991.
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